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Zusammenfassung

Most scientists consider randomized experiments to be the best method available to establish
causality. On the Internet, during the past twenty-five years, randomized experiments have
become common, often referred to as A/B testing. For practical reasons, much A/B testing
does not use pseudo-random number generators to implement randomization. Instead, hash
functions are used to transform the distribution of identifiers of experimental units into a
uniform distribution. Using two large, industry data sets, I demonstrate that the success of
hash-based quasi-randomization strategies depends greatly on the hash function used: MD5
yielded good results, while SHA512 yielded less impressive ones.

Any one who considers arithmetical
methods of producing random digits
is, of course, in a state of sin.

John von Neumann

1 Motivation and Goals

Many important questions in social sciences involve establishing cause-and-effect
relationships—for example, whether an increase in the minimum wage increases the
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article are those of the author and not of Microsoft Corporation. For comments and sugge-
stions on previous drafts of this paper, I thank the co-editor, Harry J. Paarsch, as well as
two anonymous referees. All remaining errors are, of course, mine.
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unemployment rate among low-skilled workers. Establishing causal links makes relia-
ble predictions concerning the potential effects of policy changes possible. Determining
causal relationships using only observational data can, however, be tricky because of
the omitted variables problem: one has to establish beyond reasonable doubt that on-
ly a change in the cause could have resulted in the observed effect. The great English
biologist and statistician Sir Ronald A. Fisher forcefully made the case against using
observational evidence to establish causal relationships in (5).

Randomized experiments provide a way to control for potential confounding factors.
Rather than changing the cause values for all experimental units and contrasting the
values of their effects before and after the change, one randomly divides all units
into two groups, varying the cause for only one of the groups. Since, thanks to the
random assignment, the differences between the groups are not systematic, they will
average out; any changes to the effect are driven by the changes to the cause, thus
establishing the causal link. Among technology companies that conduct their business
over the Internet, randomized experiments have proliferated recently under the name
A/B testing.

Today, the main way to implement randomization on computers is to use pseudo-
random number generators. Even though such pseudo-random numbers are both ea-
sily reproducible and mostly indistinguishable from true random ones, several reasons
exist (discussed below) that make using them impractical for Internet-based A/B te-
sting. Instead, hash functions are used to transform the distribution of experimental
unit identifiers into something that resembles a uniform distribution, which is then
used to assign units into treatment and control groups according to the experiment’s
design.

This paper is motivated by the observation that the choice of hash function matters.
Hundreds of different hash functions exist, but some are more appropriate for quasi-
randomization applications than others. Some hash functions, when applied to only
a subset of all possible inputs, can yield a distribution that is nowhere close to the
uniform distribution. I illustrate this fact by applying two popular hash functions
to two data sets having large numbers of products. The MD5 hash function yielded
distributions that are virtually indistinguishable from the uniform’s, while on the
same data sets, the SHA512 hash function produced considerably less-than uniform
distributions as measured by formal statistical tests.

The remainder of this paper is organized as follows: In Section 2, I provide an overview
of what randomness means and how it is used for experimentation. Next, in Section 3,
I discuss how experiments can be conducted over the Internet. After that, in Section 4,
I outline how hash values are used in lieu of pseudo-random numbers when assigning
treatment status in experiments. Finally, in Section 5, I present the results from
applying the hash-based quasi-randomization technique to two large data sets, while
I conclude in Section 6.
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2 Overview

Randomness is surprisingly difficult to define clearly. In the same spirit of defining
darkness as the absence of light, the Merriam-Webster dictionary defines randomness
as the absence of any predictable pattern. The following story may be helpful: Imagine
a person sitting on the lake shore, throwing stones into the lake without any purpose.
If every subsequent stone is equally likely to hit the water anywhere, then one might
claim that the stones are thrown randomly. Of course, many different factors can affect
the final distribution of stones’ splashes, such as thrower strength, heterogeneity in
stones, wind speed, thrower stamina, and so forth. In short, it is difficult to construct
a clean example of a perfectly random process.

Perfect randomness is largely a theoretical abstraction invented by statisticians to
simplify representing complex realities using simple models. Even though individu-
al random events are unpredictable, the relative frequencies of different outcomes
averaged over large numbers of events can be predicted. Thus, another way to view
randomness is as a measure of the risk of outcomes, rather than complete unpredicta-
bility.1 Of the many fields in applied statistics that rely on the notion of randomness,
few are as critically dependent on it as the field of experimental design and evaluation.
Since the publication of Fisher’s pathbreaking book (5), statisticians have recognized
that randomization is the key to proper causal inference. Questions such as “Does x
cause y?” are critical to understanding how the world works, but can be fiendishly
difficult to answer. At the heart of the challenge is the problem of omitted variables
bias. When one observes a change in y and seeks to determine whether a change in x
caused it, excluding the possibility of a change in some other factor z that one never
observes is nearly impossible. In reality, however, z could have been the true cause of
the change in both x and y. In fact, Fisher used this rhetoric to argue that smoking
need not cause lung cancer: other confounding factors could be the source of both
smoking and cancer. Today, Fisher’s error is well understood, but if an intellectual
giant of Fisher’s stature can get a little confused, then the rest of us need to be very
careful when attempting to establish causality.

Randomization is considered the best method available to establish causality, e.g. (4).
Suppose one seeks to quantify the causal impact of a change in x on y. The best way
to accomplish this is as follows:

1. Put together a sample of I units for which both xi and yi can be reliably measured.
2. Randomly split the sample into two halves, labeling them “treatment” and “con-

trol.”
3. Change the values of x in the treatment group, leaving the values of x in control

group unchanged.
4. Wait for some reasonable amount of time, and then measure y in both treatment

and control groups.
5. Compare the average of y values between treatment and control groups to form

conclusions.

1 I am making a distinction between risk and uncertainty, using the term risk in the sense
proposed by Frank H. Knight in his classic book (6). In other words, Knightian risk can be
characterized by a probability distribution, whereas Knightian uncertainty cannot.
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Central to implementing the above plan is randomization. Even though flipping coins
or rolling dice can be entertaining, such methods of randomization have two major
drawbacks. First, they are time-consuming, particularly for large I. Second, they are
fundamentally non-reproducible, which is an undesirable property for a scientific pro-
cess. Yet, herein lies a quandary: reproducibility is inconsistent with true randomness.

In the past, people relied on tables of random numbers that were carefully constructed
to ensure randomness, yet offered the ability to reproduce the sequence of random
draws when needed. Today, one relies on the modern counterparts of such tables—
pseudo-random number generators, sophisticated computer programs that generate
deterministic sequences of numbers that are mostly indistinguishable from true ran-
dom sequences. By fixing a constant, commonly referred to as the seed, it is possible
to reproduce the sequence; by supplying different seeds, one can obtain completely
different sequences. Section 7.10.3 of (9) provides an overview of pseudo-random num-
bers and the software used to produce them. Without such software, it is impossible
to perform experiments at scale.

3 Online Experimentation

3.1 Terminology

In this section, I briefly outline different types of experiments that are commonly
performed by technology companies on the Internet. Before discussing the details,
however, I have found it useful to define several key terms that will be used throughout
the paper. Let me first, however, acknowledge that my presentation has been heavily
influenced by the research of several of my colleagues at Microsoft, some of which is
documented in (7).

First, an experiment is defined by its treatment logic. In the majority of applications,
the existing state is typically chosen as the baseline (control), while a proposed change
is implemented as the treatment. A bewildering variety of potential treatments exists,
the simplest being a small tweak in webpage layout. Highlighting different attributes
of an offer, such as price or feedback from customers who previously purchased it, are
other examples. Less obvious examples involve changes to the back-end algorithms
that determine what users see on a page, for instance, result ranking algorithms for
seach engines, like Bing or Google. Describing different kinds of treatments is its own
paper.

For the remainder of this paper, I shall focus on experiments with a single treatment
and asssume that each unit (see below) is ex ante equally likely to fall into either the
treatment or the control group. Among technology companies, experiments like these
are commonly referred to as A/B tests. Although the name suggests that only two
variants (A and B) are being contrasted for the purpose of finding which one works
better, it is now common to refer to experiments with several treatments as A/B
tests, too. In addition to A/B tests, A/A tests exist as well. As that name suggests,
in an A/A test, two identical versions are pitted against each other; the main purpose
of A/A tests is to assess the quality of experimentation software infrastructure. By
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design, no differences between treatment and control should be found in an A/A test;
if a significant difference is found, then its most likely cause is defective software.

Second, every experiment must have a success metric (or criterion). Without one, it
is impossible to decide whether an experiment delivered useful results. Put simply,
when no destination is set, one cannot determine when the journey has ended. Typical
success metrics tend to be closely related to business objectives; examples include net
revenue or the conversion rate (the fraction of webpage visitors who have placed
orders) as well as more technical metrics, such as latency (how long it takes for
a webpage to render). The success metric must be measurable: however useful it
may be to improve customer sastisfaction, that sentiment is notoriously difficult to
measure. Moreover, experience shows that a successful experiment involves a single
success metric. In a business environment, such a requirement can be difficult to
effect in practice because different stakeholders can often have conflicting objectives.
In addition, for reasons that have more to do with corporate politics rather than
science, which are beyond the scope of this paper as well, it is best to reconcile such
conflicting objectives before the experiment rather than after.

Third, the unit of experimentation must be chosen. The success metric must then be
computed for every unit in the experiment, so one can compare how the treatment
and control groups differ in their experiences. Most commonly, every website visitor
is a single unit of experimentation; for example, in an online store, Alice and Bob
see different page layouts for the same item or receive different ranked search results
for the same input query. Alternatively, an online store may set a product as the
unit of experiment, and then examine competing pricing strategies for treatment and
control.

Finally, for the purpose of making a decision concerning the final outcome of the
experiment, choosing a confidence level is important. Given the treatment definition,
the success metric, and data concerning units of experimentation, the statistical un-
derpinnings required to make a decision are usually relatively straightforward. The
significance level enables making a decision concerning how large a difference bet-
ween the treatment and the control groups is deemed too large to be driven purely
by sampling variation.

An important, but frequently overlooked, aspect of online experimentation is the
relative ease of rolling back the changes. For instance, consider an experiment in
which the treatment appears to improve the success metric dramatically on average,
but results vary considerably across individual experimental units. One could argue
that it may be worthwhile to launch the treatment version as the new default and
monitor the results closely, being ready to roll back to control if improvements do
not occur. This strategy may be too risky in an experimental setting where poorly
chosen treatments may have long-lasting adverse impact on subjects, such as in tests
of drug by pharmaceutical firms.

3.2 Types of Online Experimentation

Classifying online experiments into two major groups based on the unit of experimen-
tation makes analysis clearer. Most Internet experiments focus on website visitors as
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the experimental units—that is, user-based experimentation. Item-based experiments
are less common, even among firms like Amazon.com, which can perform experiments
across its vast product catalog, or Netflix, which can lever its expansive library of mo-
vie titles to the same end.

What are the advantages and disadvantages of the user-based versus the item-based
approaches? In general, user-based experiments are more attractive because the sam-
ple sizes in such experiments naturally grow as new visitors arrive at the website.
Every participating user receives a consistent user experience on the website, but dif-
ferent users’ experiences will vary. By contrast, item-based experimentation admits a
uniform experience for all users interacting with a product, but the experiences across
products can differ.

Pricing experiments are good examples of when the item-based approach is superior
to user-based approach. Randomly perturbing the price of a product charged by an
online store is an excellent way to eliminate the endogeneity that plagues researchers
seeking to estimate demand elasticities. Unfortunately, users tend to resent such expe-
riments: that some pay more than others for exactly the same product is perceived as
unfair, which can cost the firm money. (Remember, the goal of experimentation is to
improve firm performance, not to alienate the customer base.) Within an item-based
framework, prices for an entire group of products are randomly perturbed; every user
faces these perturbed prices, thus eliminating the unfair pricing.

In addition to segmenting experiments according to experimentation unit, it is also
helpful to consider experimentation layers—that is, to distinguish between front-end
and back-end experiments. A front-end experiment usually involves a change in the
layout of a webpage, which can be as comprehensive as a complete website overhaul or
as minimal as a change in the text on the button that is displayed to the visitor—for
instance, “Donate Now” versus “Learn More”. By contrast, a back-end experiment
is usually concerned with tweaking the algorithms resposible for generating webpage
contents, such as search engine results in response to a particular query.

The combinations of experimentation unit and layer are presented in Table 1.

Tabelle 1 Examples of Different Types of Online Experiments

Experimentation Layer

Front End Back End

Experimentation User Change page text or design Alter search algorithm

Unit Item Highlight certain item attributes Vary prices for some products

3.3 Software Implementation

On the surface, nothing prevents the researchers responsible for online experiments
from using pseudo-random number generators to determine treatment assignments.
State-of-the-art methods for generating sequences of pseudo-random numbers exist
and are readily available. For example, the Mersenne Twister algorithm, developed
by (8), is used to generate pseudo-random numbers in Python and R; implementations
of this algorithm exist for C/C++ and Java as well.
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The traditional experimentation paradigm, however, involves a number of assumpti-
ons that greatly facilitate random treatment assignments. First, the experimentation
population is usually of fixed size; that is, the treatment assignment for all needs to
happen just once all at the beginning of experiment. Second, once treatments have
been assigned, it is usually straightforward to identify the treatment status of every
subject.

By contrast, on large websites, many experiments may be taking place simultaneously;
a single customer can be enrolled in several tests. Moreover, it is often desirable to
be able to adjust the percentage of population that falls into the treatment group.

In an online setting, these factors do not play well with the way that pseudo-random
numbers are generated. In user-based experiments, the population under experimen-
tation is usually defined as all visitors to a particular set of webpages over the course
of the experiment. Almost by definition, the size of the group is unknown a priori.
As such, one-shot assignment is infeasible.

This problem is aggravated by the fact that most large websites rely on fleets of servers
to handle incoming traffic from the Internet. Generating pseudo-random numbers
in a distributed-computing environment is difficult: a näıve strategy for selecting
pseudo-random number generator seeds can cause the outputs to be correlated. An
extreme example would involve setting the seed to the same value on every server,
thus obtaining identical sequences of pseudo-random numbers.

Identifying and keeping track of the treatment status of every participant in the
experiment is also challenging. On some websites, like Facebook, it is easy to identify
returning users because they sign in. Most websites, however, do not require visitors to
authenticate their identity when browsing, which makes identifying returning visitors
difficult.

One way to detect returning visitors on the Internet involves using cookies, which are
small text files created by the website that are stored on the user’s device. Some users
do not accept cookies; others delete them periodically. In either of these circumstances,
return identification is made virtually impossible. Moreover, a single visitor can use
several different devices to access a website, but cookies are inherently tied to a device.
Even when users accept cookies and are kind enough to use only a single device to
access the website, randomization based on pseudo-random numbers is more difficult
than it may seem. Here’s why.

Initially, imagine that the website is run on a single server. In principle, one could
call a pseudo-random number generator every time a new user arrives, and assign a
treatment status to the user based on that pseudo-random draw. One would then need
to record the treatment status for each user and store it in some lookup table, where it
can be easily accessed later. When a new visitor arrives, one must check whether this
user has already been assigned to a treatment using the lookup table, and generate a
status assignment if one has not been previously made. If website traffic is managed
by more than one server, then this lookup problem quickly becomes intractable: as
more and more users arrive, a balance must be struck between inserting new records
into this table for users who have not been assigned to a treatment group and ensuring
that the table is up-to-date and available for every machine in the website fleet, so
every user who already had been assigned is handled accordingly. The CAP theorem
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from the database theory guarantees that this will eventually become impossible to
implement; see (1).

Admitting several experiments per user exacerbates the problems: in an online set-
ting, tens of concurrent experiments can exist. For example, Amazon.com could be
testing changes to layouts of product detail pages in the shoes category, while simulta-
neously experimenting with alternative recommendation models for video streaming.
Any customer shopping for shoes will be automatically enrolled in the first test; if the
same person decides to stream a movie, then that person is likely to fall into the re-
commendation algorithm experiment as well. When treatment assignments for every
experiment are implemented using pseudo-random numbers, it becomes necessary to
generate and to store users’ treatment statuses for every test in which they are en-
rolled. Reusing the random draws will almost surely introduce unwanted correlations
into treatment assignment, and undermine inference when assessing the statistical
significance of experimental results.

Scaling up and down treatment percentages is a desirable feature to have for back-end
experiments—for instance, when old software is reimplemented using a new frame-
work which, in theory, should produce identical results. Rather than launching the
new code for all users at once, it is typically initially enabled for a small random
fraction of incoming traffic, on whom its performance is carefully monitored, to avoid
massive performance degradation. If the new code performs well on a small subset of
traffic, then it is dialed up incrementally to a larger percentage and is continued to be
monitored for potential issues. Being able to dial up treatment percentages randomly
helps to ensure that the problems are not arising simply because of some systematic
differences in the traffic received by the new system.

For all of the above reasons, and more, rather than relying on pseudo-random num-
bers, computer scientists have instead developed quasi-randomizing techniques that
are based on the hashing algorithms described in the next section.

4 Hashing

The main idea behind using hash functions for quasi-randomization is the following:
map the data into a uniform distribution using a deterministic function. Formally,
a hash function is any function that can map inputs of arbitrary size to outputs of
fixed size. The outputs returned by such function are called hash values, but they are
also frequently referred to as hash codes, or just hashes, for short. In Appendix A,
I provide a simple, yet detailed, example borrowed from (2). One way to use hash
functions in computer science is to construct hash tables, which are data structures
optimized for rapid retrieval of stored information.

In principle, it is straightforward to a use hash function as a quasi-randomizing device.
Consider the case of a user-based experiment. First, a unique string is used to identify
the experiment must be chosen. Second, for every user who is selected to be a part of
the experiment, their unique user identifier is combined with the experiment identifier,
for instance, “User1 Experiment2”. Third, a hash function is applied to this string.
Finally, for the equal treatment-control split case, one could assign the odd hashes
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to the treatment group and the even hashes to the control, or vice versa. In general,
once the hash value has been produced, more sophisticated allocation strategies can
be easily employed. For example, if the entire set of experimental units is known
in advance, as it is frequently the case in an item-based experiment, then one can
identify the largest hash value and rescale all hashes to fall into the unit interval, thus
reducing the assignment problem to the case where it is possible to make uniform
pseudo-random draws for each unit.

Of course, uniformity and randomness are not necessarily interchangeable. In fact,
proper pseudo-random generated sequences of numbers frequently appear to be non-
random to an untrained eye. Usually this happens because people tend to undere-
stimate probabilities of runs. Consider the following example. Suppose one uses a
pseudo-random number generator to randomly assign test subjects to either treat-
ment or control with equal probability. Examining the data reveals that this process
has assigned treatment to seven subjects in a row. One might argue that the proba-
bility of seven treatments in a row is 0.57 or about 0.008. But this line of reasoning
grossly underestimates the probability of a run of 7 identical assignments. If someone
asked the probability that the next 7 assignments would all be treatments, then 0.57

would be the right answer. But that is not the same as asking whether an experiment
is likely to see a run of length 7 because the run could start any time, not just on
the next assignment. More details about likelihoods of runs can be found in (11). In
contrast, consider a process that can only take values 0 or 1. A deterministic rule
yt = 1−yt−1 will generate extremely uniform values with enough draws, even though
there is nothing random about any of them.

Hash-driven treatment assignment strategies have some major advantages: First, ha-
shing turns treatment assignment and lookup into a “stateless” problem. Knowing the
experiment identifier and the unit identifier is sufficient to compute the hash value for
the unit, together with the treatment assignment function this completely alleviates
the need to remember the treatment status for every unit: because hash functions are
deterministic, applying them to the same inputs is guaranteed to produce the same
outputs. Second, this strategy trivially scales out to multiple experiments per user:
all it takes is to come up with a different experiment identifier for each new test.
This ensures that the hash value of the combination of unit identifier and experiment
identifier will vary. Third, for user-based experiments, this strategy easily accommo-
dates new units coming into the experiment. Provided every subsequent user has a
well-defined user identifier, that user can be combined with the experiment identifier
and hashed, and the treatment status can be assigned.

Of course, disadvantages exist when using hash functions in lieu of pseudo-random
number generators, too. Most of these disadvantages derive from the same root cause:
some hash functions work better than others. Hundreds of hash function exist; their
properties vary, depending on the application. Two facts warrant special attention—
local sensitivity and the possibility of collisions.

To discuss local sensitivity, it is often helpful to imagine that the hash function is
a continuous (in the mathematical sense of the term) function of its argument; that
is, small perturbations in inputs do not result in large abrupt swings in the values
of outputs. Although there is nothing sinister about continuity per se, consider what
can happen if unit identifiers all adhere to some common structure. In this case, hash
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values for units with similar identifiers can end up being similar as well; a non-trivial
correlation can be induced between treatment and control units.

The possibility of hash-value collisions introduces similar challenges. A collision in
hash values occurs when two different inputs are mapped to exactly the same output.
The example in Appendix A is designed to produce collisions. A well-chosen hash
function minimizes collisions. A poor choice of hash function can yield a distribution
of hash values that has mass points, which can in turn induce correlation between
treatment and control units.

In my experience, the above problems are more likely to happen in item-based as
opposed to user-based experiments because in user-based experiments identifiers are
frequently generated on the fly when the user lands on the first webpage. These
identifiers are typically long strings of digits that are determined in part by the system
clock of a server. To the extent that arrivals are random, so too are the hash values. In
addition, as more users enroll in the experiment, an increasing array of possible user
identifiers is likely. By contrast, item identifiers are frequently determined according
to a particular logic, and the experimental populations are selected in advance. As
such, some patterns in item identifiers may be present in the experiment; with a poorly
chosen hash function, treatment assignments may fail to be as good as random ones,
pseudo-random ones that is.

To illustrate the potential problems with hash-based treatment assignments in an
item-based framework, I investigated applying this quasi-randomizing strategy to two
data sets having large numbers of products. Two popular hash functions were used:
MD5, proposed in (10), and SHA512, proposed in (3). Both of these functions are
complex enough to omit the details on how they are implemented. For my purposes,
however, I only needed to compute them for an arbitrary input.

5 Application

In this section, I present results derived from using two different hash functions on
an item-based experimentation setting involving two data sets. First, I consider the
Dominick’s data set, which has been popular among marketing researchers. I then
repeat the analysis using products from a large monthly panel data set of laptop
sales in North America. This data set was purchased by Microsoft for market analysis
and was made available internally for general research purposes. For both data sets,
I conducted the analysis according to the following steps:

1. I extracted the complete set of unique product identifiers from the data. In case
of Dominick’s data, I collected all of the 18,003 unique universal product codes
(UPCs) that were made publicly available to researchers.

2. I appended the same string “ExperimentName” to each product identifier and
applied a hash function to each of the resulting strings. This resulted in a 32-
character string that contained the hexademical representation of hash value. A
hexademical number can take sixteen possible values, from 0 to 9, as well as letters
A, B, C, D, E, or F. For example, UPC “001192603016”, which corresponds to



Konstantin Golyaev: Randomization in Online Experiments 11

the product “Caffedrine Caplets 1”, became “74288c271f3f75163234e0fb8cc4d8fa”
when passed through the MD5 hash function.

3. Since every hash value is simply a huge number, I rescaled all of them by dividing
each by the largest value possible on the computer, which ensured that the rescaled
hash values lived in the unit interval and preserved their distribution.

4. Under the null hypothesis that hashing can be used in lieu of randomization, the
rescaled distribution should resemble closely the uniform distribution. I formally
tested this hypothesis, first using the Kolmogorov–Smirnov (KS) test, and then by
discretizing both distributions into 20 bins with the step size of 0.05 and applying
Pearson’s χ2 test.

My entire analysis was implemented in the R programming language. Reading and
cleaning the product identifier data were relatively straightforward exercises in data
munging. Similarly, implementing the KS and χ2 tests were undemanding tasks. The
only bottleneck involved the scaled distribution of hash values of the products: the
digest package in R provides access to a number of popular hashing algorithms,
including MD5 and SHA512. Unfortunately, most hash functions return numbers
that can results in numerical overflow errors for standard R data types, including the
ubiquitous double-precision floating point type, often referred to as double. A package,
having the cryptic name Rmpfr, which stands for “R Multiple Precision Floating-Point
Reliable”, was used to handle such large numbers correctly, without losing precision.
Once rescaled, the hash values could then be represented by R’s double data type
without incident.

5.1 Data Descriptions and Summaries

I used the UPC data provided by Dominick’s Finer Foods to James M. Kilts Marketing
Center at the University of Chicago Booth School of Business. From 1989 to 1994,
the Graduate School of Business at the University of Chicago and Dominick’s Finer
Foods entered into a partnership for store-level research into shelf management and
product pricing. Randomized experiments were conducted in more than 25 different
categories throughout all stores in this 100-store chain. One byproduct of this research
cooperation was a data set that concerned approximately nine years of store-level data
involving the sales of more than 3, 500 UPCs. These data are unique in the breadth
of coverage and for the information available on retail margins. None of the products
in the UPC files is available for sale any longer.

In my analysis, I only focused on the UPC files. The data set contains 18, 003 unique
UPCs that span 28 categories—such as beer, cereals, cheeses, and so forth. Although
I expected UPCs to be twelve digits long, the majority of them only had ten digits;
some had as few as three digits. To unify records, I prepended the appropriate number
of leading zeros to each UPC to ensure each is exactly twelve digits long.

I also analyzed the data concerning laptop sales in North America during the period
of July 2012 through April 2016. This data set contains 51, 319 unique products that
have several attributes. Of these, 53 percent are laptops, 40 percent are desktops,
3.4 percent are tablets, with the remainder being smartphones. These products were
manufactured by 122 different companies, including Dell and Lenovo. 84.5 percent of
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these products came with some form of Windows operating system, and about 7.1
percent were OSX machines. For this analysis, I treated all products in this data set
equally; excluding some or all of the non-PC products had no meaningful impact to
results.

5.2 Results

I present the results from applying the KS and Pearson’s χ2 tests in Table 2. To illu-
strate that the choice of hashing algorithm matters, I investigated two popular hash
functions: MD5 and SHA512. Results from applying the MD5 algorithm do not reject
the notion that the distribution of scaled hash values is statistically indistiguishable
from the uniform distribution for both data sets. In contrast, when I used the SHA512
hashing algorithm, I obtained considerably larger values of the test statistics using
the same data. The SHA512 results alone calls into question the notion of a uniform
distribution of scaled hash values.

Tabelle 2 Results from Comparing Distribution of Scaled Hash Values to Uniform Distribution

MD5 Hash SHA512 Hash
Data set Test Test Statistic Test P-Value Test Statistic Test P-Value

Dominick’s
KS Test .0044 .884 .0067 .396

χ
2 Test 14.3249 .814 31.2043 .052

PC Sales
KS Test .0026 .867 .0056 .078

χ
2 Test 21.2089 .385 28.4202 .099

These results suggest that the choice of hash function is important. One hash function
yielded a distribution of values that is much closer to the uniform distribution than did
the other. It would be desirable to repeat the above analysis with a large collection
of diverse data sets to strengthen the conclusions. In the absence of such data, I
approximate the above experiment by drawing 2000 bootstrap samples from each of
the two data sets and repeating the analysis on each sample. In Figures1 and 2, I
plot the histograms of p-values for each test and hash function combination over the
bootstrap samples. Each bin has a fixed width of 0.05. I added vertical lines to point
out the original p-values for the corresponding data set, test, and hash functions.

The results from the plots reinforce my conclusion, both quantitatively and qualita-
tively. In all four plots, a larger fraction of the SHA512 distribution mass is located
in the leftmost bin, as contrasted with the MD5 distribution. In Table 3, I summarize
what fraction of bootstrap samples resulted in rejection of the null hypothesis. In all
cases, I am more likely to reject the null for SHA512 hashes than for MD5 hashes.

A final observation is also in order: even for MD5 hashes, the null hypothesis gets
rejected on a large fraction of samples, potentially as high as 77.8 percent of them. I
conjecture that these results are at least partially driven by the bootstrap approach:
since all samples are drawn with replacement, it is possible that samples where the null
gets rejected contain fewer distinct products in them, thus increasing the probability
of hashing collisions.
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Abbildung 1 Distribution of P-Values for Dominick’s Data, Based on 2000 Bootstrap Samples

Tabelle 3 Results from Bootstrap Samples of Both Data Sets

Fraction of P-Values <= 0.05
Data set Test MD5 Hash SHA512 Hash

Dominick’s
KS Test .1305 .3555

χ
2 Test .5335 .948

PC Sales
KS Test .1595 .6775

χ
2 Test .778 .917

Beyond these examples, in my experience, I have seen the distribution of hash values
to contain mass points, as well as wide intervals with zero mass. To be clear, such
deviations are not caused by the hash function alone. Rather, they obtain because
of interactions between the hash function and the inputs, which may come from a
limited subset of all possible inputs.
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Abbildung 2 Distribution of P-Values for PC Sales Data, Based on 2000 Bootstrap Samples

6 Conclusion

Randomized experiments are considered the best method available to establish cau-
sality. Pseudo-random number generators are the best known way of generating re-
producible numbers at scale that are as good as random for most practical purposes.
In online settings, however, it is common to use hash functions instead of generating
pseudo-random numbers. Even though hash-based quasi-randomization strategies are
often viable, their performance hinges critically on the choice of hash function. Using
the Dominick’s data set and a large panel data set of PC sales, I demonstrated that
popular MD5 hash function generated numbers that are statistically indistinguishable
from uniform pseudo-random numbers. On the other hand, the SHA512 hash function
generated numbers that are considerably less than uniformly distributed.
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Appendix

A Example of Hashing

A wonderful illustration of hashing is provided in (2). Consider a data structure that
consists of collection of key-value pairs. For example, a retailer might have a database
of customers and store a number of data values for each customer. Imagine a key-
value store (dictionary) where keys are names of customers and values are arbitrary
arrays of customer-specific data. In practice, unique, randomly-generated customer
identifiers would likely serve as keys; in a large database, the likelihood of naming
collisions among customers becomes too high. Using customer names as keys, however,
facilitates exposition.

As an example, consider locating a particular customer within the database, speci-
fically assume that a total of I customers are recorded in the customer database.
A näıve implementation of storage and retrieval would involve maintaining a loo-
kup table K(i) for each customer i ∈ 1, . . . , I. Searching for data concerning specific
customer i∗ would then involve the following steps:

1. Set i = 1.
2. If i > I, stop and return “failure”.
3. If i = i∗, stop and return “success”.
4. Increase i by 1 and go back to step 1.

In the worst-case scenario, finding data concerning customer i involves (I + 1) reads
from the list of keys if one decides to traverse it in this fashion. In a real-world
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application, where I can easily be in billions, this method is too slow. Hashing was
designed to speed up the process by storing the keys in J smaller lists.

Formally, a hash function maps a key k ≡ K(i) into a list of numbers h(k) between
1 and J . In addition, two auxiliary tables are created, F (j) and N(i), where F (j)
points to the first record in list j ∈ 1, . . . , J , and N(i) points to the “next” record
after record i in its list.

As an illustration, let J = 4 based on the first letter of customer’s name as follows:

1. j = 1 if first letter is between A and F,
2. j = 2 if first letter is between G and L,
3. j = 3 if first letter is between M and R, and
4. j = 4 if first letter is between S and Z.

Before any data are recorded, set I = 0. To formalize the notion of an empty list, set
F (1) = F (2) = F (3) = F (4) = −1 In addition, set N(i) = 0 to denote when i is the
last entry in its list. Armed with these definitions, one can begin inserting data into
this new structure.

Assume that the first customer who needs to be recorded is named Nora. The hash
function defined above will insert Nora’s record into list j = 3, since the first letter
of her name, N, is between M and R. Now I = 1, F (3) = 1, and all other values of F
and H are so far unchanged. Let the name of the second customer be Glenn. Inserting
him into the database would change I to 2 and set F (2) = 2, with no other changes.
Now suppose that the third customer is named James. Adding him would result in
I = 3, and N(2) = 3. With three records in the database the entire structure now
looks as follows:

– Number of records: I = 3, and number of hash buckets: J = 4.
– Available keys: K(1) = Nora, K(2) = Glenn, K(3) = James.
– Indices of first records in each hash bucket: F (1) = −1, F (2) = 2, F (3) = 1,

F (4) = −1.
– Indices of next records in each hash bucket after the first one: N(1) = 0, N(2) = 3,

N(3) = 0.

Fast-forwarding the example, assuming that 18 customer records were inserted into
the database, things now looks like the following:

List 1 List 2 List 3 List 4
Dianne Glenn Nora Scott
Ariel James Michael Tina
Brian Jennifer Nicholas
Francis Joan Ray
Douglas Jeremy Paula

Jean

From this example, one can see that, in the worst-case, it would take six steps to
locate the record using these four lists. With 18 total records this is a three-fold
speed up in search and retrieval. In the average case, the time it takes to locate a
record falls from (I/2) to (1/J); when I and J are large, this makes a big difference.
A precise search algorithm for an entry i∗ would look as follows:
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1. Set j = h(i∗) and i = F (j).
2. If i ≤ 0, stop and return “failure”.
3. If K(i) = i∗, stop and return “success”.
4. Set j = i, set i = N(j), and return to step 2.

To locate Jennifer in the above example with 18 records, set j = 2, since J is between
G and L, and i = 2, since Glenn is the first entry in the second list. Because Glenn
is not Jennifer, update i to 3, since N(2) = 3, that is, James is the next record in
the second list after Glenn. Now, James is also not Jennifer, so i is updated to N(3).
The exact value would be determined by when Jennifer was added to the database,
but the important part is that now K(N(3)) = i∗, that is, the search terminates
successfully after three iterations.
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